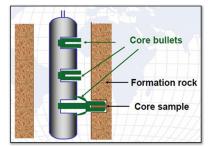


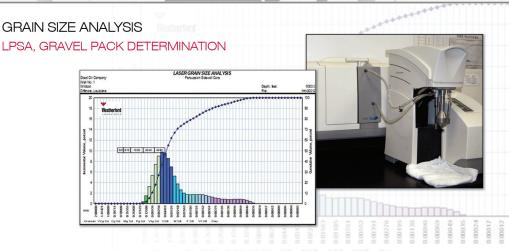
Percussion Sidewall **Core** Analysis


THE MOST COST-EFFECTIVE AND USEFUL TOOL IN YOUR EVALUATION ARSENAL

With over 200 years of combined experience. Weatherford Laboratories' sidewall core analysis team offers an inexpensive and rapid method to determine porosity, permeability, and oil / water saturations. Our experts can explain guestionable log responses and also discern pay from non-pay, regardless of mud type. Sidewall cores allow for precise depth control to investigate the petrographic and petrophysical details of your reservoir, ultimately giving you the confidence to make the most informed completion decisions.

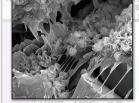
BENEFITS OF PERCUSSION CORE SAMPLES

- Residual saturations can be useful in water-based mud systems
- Sample volumes are typically suitable for petrology and geochemistry
- Aid in completion strategies, and evaluate anomalous log response
- Very quick turnaround time



Sample Perm		Porosity	Pore Volume Saturation		Prob	Bulk Volume Saturation			Crit.	QA	Core Lithology	
	Permeability							Comb.				
Depth			Oil	Water	Prod	Oil	Gas	Gas	Water	Factor		
Feet	mD	%	%	%		%	%		%			
294.0	2.5	17.7	0.0	78.9	(6)	0.0	3.7	0	70	1	Sd vfg-silt sshy-shy lams vcalc no flu	
1296.0	7.1	18.6	0.0	72.0	(6)	0.0	5.2	0	67	1	Sd vfg vslty sshy lams vcalc no flu	
1303.0	525.0	26.8	0.0	65.1	Gas	0.0	9.4	0	38	1s	Sd f-vfg sslty sshy vcalc no flu	
4307.0	130.0	25.9	0.0	61.2	Gas	0.0	10.0	0	50	1s	Sd f-vfg slty shy lams vcalc no flu	
438.0	0.1	15.0	0.0	80.4	(6)	0.0	2.9	0	73	2sf	Sd vfg-silt vshy vcalc no flu	
1440.0	105.0	27.7	0.0	69.7	Gas	0.0	8.4	0	54	1s	Sd f-vfg slty shy vcalc no flu	
4441.0	125.0	29.9	0.0	68.4	Gas	0.0	9.4	0	53	2s	Sd vfg slty sshy-shy vcalc no flu	


Percussion Sidewall Core Analysis



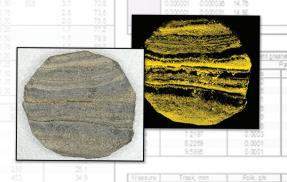
PETROGRAPHIC ANALYSIS

XRD, TS, SEM

- Low Resistivity
- Reservoir Quality
- Fines Migration
- Formation Damage

Scanning Electron Microscopy (SEM)

Sample	Sample	CLAYS				CARBONATES				OTHER MINERALS						TOTALS		
Number	Depth (ft)	Chlorite	Kaolinite	Illite/Mica	Mx I/S*	Calcite	Dolomite [*]	Dolomite(Fe/Ca+)2	Siderite	Quartz	K-spar	Plag.	Pyrite	Apatite	Barite**	Clays	Carb.	Othe
1	2947.0	2	12	2	3	Tr	1	1	9	49	14	5	2	0	0	19	12	69
2	3091.0	2	21	2	1	Tr	1	1	13	37	15	3	4	0	0	26	16	58
3	3135.0	Tr	1	Tr	1	1	Tr	1	Tr	86	8	2	Tr	0	Tr	2	2	96
4	3152.0	Tr	2	Tr	1	1	Tr	Tr	0	84	9	2	1	0	Tr	3	1	96
5	3164.0	3	1	4	Tr	1	Tr	1	1	78	8	2	1	0	0	9	3	88
6	3168.0	1	9	2	3	Tr	Tr	1	3	65	11	3	2	0	0	15	5	80
7	3172.0	2	9	2	4	1	Tr	1	3	59	12	5	2	0	0	17	6	77
8	3176.0	4	24	2	25	Tr	Tr	Tr	2	21	8	4	10	0	0	55	3	42
9	3202.0	4	22	5	42	Tr	Tr	Tr	2	11	7	4	3	0	0	73	2	25
10	3204.0	8	Tr	12	12	9	8	Tr	Tr	37	8	3	3	0	0	33	17	50
11	3208.0	Tr	2	1	Tr	1	0	1	0	78	12	5	Tr	0	Tr	4	2	94
12	3210.0	Tr	3	Tr	2	Tr	1	1	34	46	10	2	1	0	0	6	36	58
	AVERAGE	2	9	3	8	1	1	1	6	53	10	3	2	0	0	22	9	69


X-Ray Diffraction (XRD)

SCAL / FORMATION DAMAGE

- Measures Rock / Fluid Interaction
- Determines Most Compatible Fluid

ACID SOLUBILITY

- Determines Rock Solubility
- Effectiveness of Acid

