

Drilling Jars

Dailey[®] Hydraulic Drilling Jar with Latch

Weatherford's *Dailey* hydraulic drilling jar with latch is designed to provide immediate jarring in either direction to free stuck pipe or bits for improved jarring flexibility and effectiveness.

The jar can be teamed with Weatherford's *Dailey* HyPulse Jar Slinger[®] to increase the acceleration of the hammer mass for greater impacts.

Applications

- High-angle drillstrings
- · Conventional oil and gas wells
- · Deviated oil and gas wells

Features, Advantages and Benefits

- In its normal *locked* position, the jar delivers immediate upward or downward blows to free stuck pipe. This two-way flexibility enhances jarring performance.
- The jar comes complete with a mechanical lock mechanism to prevent accidental firing during normal operations and to eliminate the requirement for a safety clamp.
- The hydraulic metering system works independently from fluid viscosity to ensure consistent delay times over the full operating temperature range for optimal performance.

Dailey[®] Hydraulic Drilling Jar with Latch

Specifications

OD (in./ <i>mm</i>)	4-3/4	6-1/2	7	8
	120.65	165.10	177.80	203.20
ID (in. <i>lmm</i>)	2.25	2.75		3.00
	57.15	69.85		76.20
¹ Tensile yield (lbf/kN)	500,000	934,000	1,200,000	1,750,000
	2.224	<i>4.155</i>	5.338	7.784
Maximum pre-jarring pull (lbf/kN)	85,000	175,000	220,000	300,000
	378	778	979	<i>1,334</i>
Torsional yield	20,000	56,200	71,000	105,000
(lbf-ft/kN·m)	27.1	76.2	96.3	<i>142.4</i>
Maximum temperature (°F/°C)	400			
(standard/high temperature)	204			
Overall jar stroke	15	17		19.5
(in./ <i>mm</i>)	381	432		<i>4</i> 95
Poa (in.²/ <i>cm²</i>)	10.3	19.6	23.8	28.3
	66.5	126.5	153.5	182.6
Tool length with upper connector (ft/m)	33.75 10.29	34.50 36 10.52 10.97		
Weight with upper connector (lb/kg)	1,600	2,600	3,500	4,200
	725.33	1179.34	1587.57	1905.09
Standard connections	NC 38	NC 50	5-1/2 FH	6-5/8 Reg
Gap on mandrel in <i>locked</i> position (in./mm)	8.75	9.	63	10.88
	222.25	244	1.47	276.22

Dailey[®] Hydraulic Drilling Jar with Latch

Specifications

Jar lock tool size settings (in./mm)	4-3/4	6-1/2	7	8
	120.65	165.10	177.80	203.20
Up (lbf/kN)	25,000 to 35,000	60,000 to 80,000	60,000 to 80,000	80,000 -100,000
	111.21 to 155.69	266.89 to 355.86	266.89 to 355.86	355.86 to 444.82
Down (lbf/kN)	12,000 to 20,000	25,000 to 35,000	25,000 to 35,000	30,000 to 45,000
	53.38 to 88.96	111.21 to 155.69	111.21 to 155.69	133.44 to 200.17

Pump-open force is created by pressure drop across the bit. The pump pressure creates a reaction force in the tool that tries to force it open. Reduce the pump to idle before attempting to jar.

Drilling Jars

Dailey[®] Hydraulic Drilling Jar with Latch

Operation

Jarring Up

- Apply overpull at the jar sufficient to overcome the lock setting. To calculate jar loadings, see the Pump-Open Force graph and the Specifications section.
- Continue to apply loading as required. Hydraulic metering controls release.
- 3. Close the jar by applying a sufficient set-down load.
- 4. Re-engage the lock, and repeat as necessary.

Jarring Down

- Apply a set-down load at the jar sufficient to overcome the lock setting. To calculate jar loadings, refer to the Pump-Open Force graph and the Specifications section in this document.
- Continue to apply loading as required. Hydraulic metering then controls release.
- 3. Open the jar by applying a sufficient pick-up load.
- 4. Re-engage the lock, and repeat as necessary.

Maintenance

Take the following steps each trip out of the hole:

- 1. Wash the mud from the polished mandrel and from inside the bottom connection.
- 2. Check the polished mandrel carefully for any signs of corrosion, pitting, or flaking of the coating.

Example: Upward Jarring Jar				
	(lbf)	(kN)		
Total string weight	250,000	1,112		
Weight below jar	- 40,000	- 178		
Weight above jar	210,000	934		
Required or maximum overpull	+ 92,000	+ 409		
	302,000	1,343		
Indicator reading to trip jar upward	322,000	1,432		
Slack off from 200,000 (890 to 845 kN) to red	to 190,000 lt cock the jar.	of		

Example: Downward Jarring Jar				
	(lbf)	(kN)		
Total string weight	250,000	1,112		
Weight below jar	- 40,000	- 178		
Weight above jar	210,000	934		
Required or maximum overpull	- 37,000	- 165		
	173,000	769		
Indicator reading to trip jar upward	153,000	680		

Slack off from 220,000 to 240,000 lbf (979 to 1,068 kN) to recock the jar.

weatherford.com

© 2011 Weatherford. All rights reserved. 6742.00

Weatherford products and services are subject to the Company's standard terms and conditions, available on request or at weatherford.com. For more information contact an authorized Weatherford representative. Unless noted otherwise, trademarks and service marks herein are the property of Weatherford and may be registered in the United States and/or other countries. Weatherford products named herein may be protected by one or more U.S. and/or foreign patents. For more information, contact patents@weatherford.com. Specifications are subject to change without notice. Weatherford sells its products and services in accordance with the terms and conditions set forth in the applicable contract between Weatherford and the client.