HyperLine™ Drilling Motor Introduces High-ROP Capabilities in Middle Eastern Deep Gas Asset

Objectives

- Drill a 16-in. (406-mm) large-diameter section in an unstable high-pressure, high-temperature (HPHT) reservoir. The customer previously experienced service quality issues when using motors from other companies in these conditions.
- Maximize rate of penetration (ROP) and enhance drilling efficiency.

Our Approach

- The drilling services team met with the customer to review the drilling histories of nearby wells and to determine the optimal parameters for directional drilling at a high ROP in the hard formation.
- Using the historical well data, the team set benchmarks to achieve high-ROP and drilling efficiency throughout the performance drilling operation.
- To drill the section, the team deployed the HyperLine mud-lubricated motor to power the performance drilling operation.
- The HyperLine mud-lubricated motor enabled the challenging section to be drilled in one trip, with its motor lock assembly and even rubber thickness technology providing greater ROP, lower torque, and reduced stick-slip performance.
- The motor enabled drilling to the desired depth and achieved an average ROP of 19 ft (5.8 m) per hour.

Value to Customer

- Unlike the previously used motors, the HyperLine motor enabled drilling the large-diameter section of the hard formation without service quality issues.
- The motor enabled enhanced drilling efficiency and a high-ROP to save the customer US $50,000 compared to the performance drilling solutions provided by other companies.
- After delivering exceptional service quality, Weatherford drilling services was awarded contracts to drill two additional high profile directional wells.

LOCATION
- Middle East

WELL TYPE
- Onshore, gas producer

FORMATION
- Interbedded shale

HOLE SIZE
- 16 in. (406 mm)

RATE OF PENETRATION
- 19 ft (5.8 m) per hour

PRODUCTS/SERVICES
- Drilling services
- 11 1/4-in. HyperLine drilling motor

The HyperLine mud-lubricated motor with a motor lock assembly and a hard rubber thickness redirects fluid flow in the well to prevent rotation of the bit box and other components below the motor during orientation and actuation of additional hydraulic components.