

CYGNET IOT ENABLED: MQTT SUPPORT

Ryan Ackerman

Software Development Manager (CygNet)

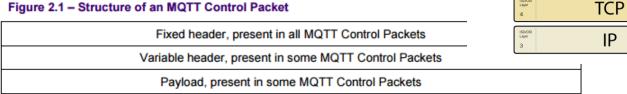
November 5th 2018

AGENDA

4		
7		rview
_	\cup \vee \subset	1 4 1 5 1

- 2 History / Features / Structure / QoS
- **3** Brokers
- 4 Communications Device
- **5** Topics
- 6 Remote Device
- **7** Payload
- 8 Data Structures
- 9 Demo

MQTT HISTORY


- Arlen Nipper (IBM) and Andy Stanford-Clark(Cirrus Link) 1999
- Requirement: Minimal battery loss and min bandwidth connecting oil pipelines over satellite connection
- Goal
 - Simple to implement
 - Provide a Quality of Service Data Delivery
 - Lightweight and Bandwidth Efficient
 - Data Agnostic
 - Continuous Session Awareness

MQTT STRUCTURE

Low overhead (at min 2 bytes)

Figure 2.1 - Structure of an MQTT Control Packet

2.2 Fixed header

Each MQTT Control Packet contains a fixed header. Figure 2.2 - Fixed header format illustrates the fixed header format.

Figure 2.2 - Fixed header format

Bit	7	6	5	4	3	2	1	0
byte 1	MQTT Control Packet type				Flags specific to each MQTT Control Packet type			
byte 2	Remaining Length							

MQTT

QUALITY OF SERVICE

- Different priority
- 3 levels
 - 0 At most once
 - 1 At least once
 - 2 Exactly once

WHY MQTT?

- A lot has changed since 1999.
 - Increased bandwidth
 - Many standard protocol options
- Why is MQTT better than all the other protocols?
 - It's not, it's different.
 - The Pub/Sub model works well in our environment.
- It's the adoption and tooling
 - Many client and server options
 - Tools, tools, tools.

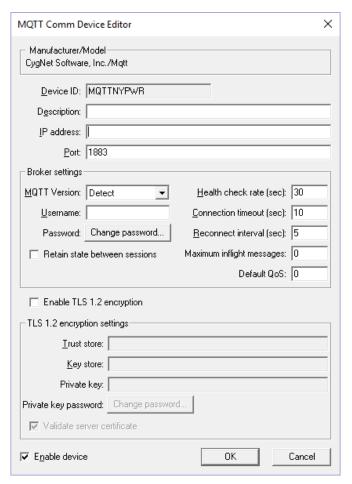
WHAT IS AN MQTT BROKER

- The middle component.
- What is the benefit over going direct?
 - One to many publishers to subscribers
 - Notification of communication failure

BROKERS

HiveMQ, Mosquitto, VerneMQ, EMQ, Paho, ...

WHAT BROKERS ARE CURRENTLY IN USE?


How does this relate to CygNet?

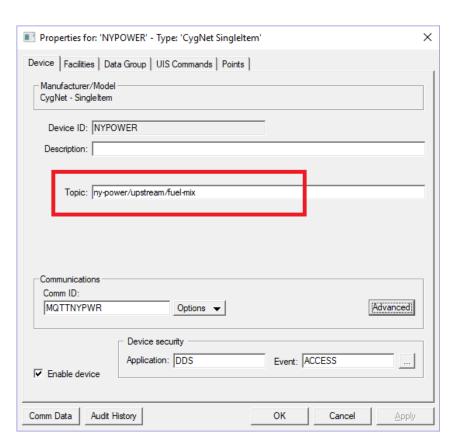
- With version 9.2 CygNet will consume data from an MQTT broker.
- All the CygNet technologies you know and love can make use of this data source.
- We are using the EIE framework for MQTT
- A communications driver will support the protocol.
- A remote device driver will support the data normalization and processing

COMMUNICATIONS DRIVER

- Not traditional poll based comm
- Notified when data is ready
- No get button, no MSS task
- Similar to OPC async comm driver

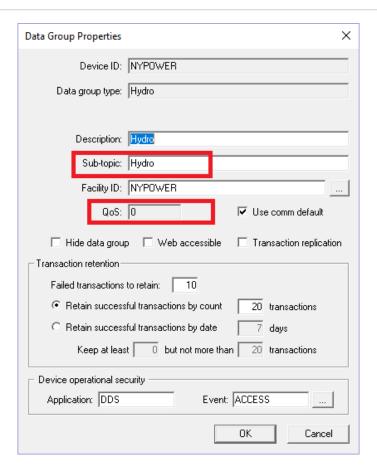
FAILOVER

- Utilize existing methods
- Define additional communications devices as necessary


TOPICS

- String identifier that categorizes, identifies or describes the data.
 - Subscriptions can include wild cards '#' or '+' for names
 - Case sensitive
- Examples
 - facility/meter
 - spBv1.0/Houston/NDATA/Facility/Device
- Length
 - Unsigned short

CYGNET IOT REMOTE DEVICE

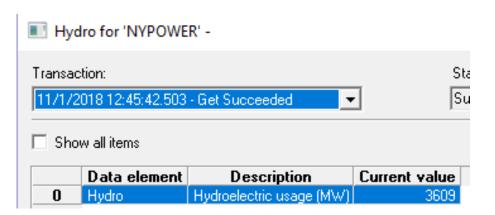

- Partial topics are defined on the remote device
- First step in identifying incoming data
- The comm device associated with the remote will handle subscriptions

DATA GROUP PROPERTIES

- Using the remote device partial topic a complete topic is created
- Define quality of service settings
- Comm device creates an MQTT subscription from the properties

PAYLOAD

- Payload data is a simple array of bytes
 - 268,435,456 bytes -> Should not be reached... Ever.
- Can be interpreted as JSON document. Arbitrary data structure.
- Also Google protocol buffers. Well defined data structure.


DATA STRUCTURE

- Sparkplug
 - Data definition already defined
- JSON
 - Device template defines relationship
 - Elements in the template are associated with elements in the payload
 - Data relationship is used on data arrival to update CygNet points

EXAMPLE PAYLOAD

```
{
    "ts": "11/01/2018 13:40:00",
    "value": 3609,
    "units": "MW"
}
```


- Incoming is examined and processed
- Timestamp is applied to point
- Unit conversions
- All other point processing events

DEMO

- Consuming data from http://ny-power.org/ MQTT broker
- If you want to see MQTT data from a CygNet data source attend "CygNet IoT: Collect, manage, distribute at the Edge"

ITHANK YOU