First MPD Project in Myanmar Successfully Completed on Deepwater Exploration Well


Harpreet Kaur Dalgit Singh; Bao Ta Quoc; Benny Benny; Ching Shearn Ho


SPE - Society of Petroleum Engineers

Publication Date

June 4, 2021


IADC/SPE Asia Pacific Drilling Technology Conference, June 8–9, 2021

Paper ID



With the many challenges associated with Deepwater Drilling, Managed Pressure Drilling has proven to be a very useful tool to mitigate many hurdles. Client approached Managed Pressure Drilling technology to drill Myanmar's first MPD well on a Deepwater exploration well. The well was drilled with a Below Tension Ring-Slim Rotating Control Device (BTR-S RCD) and Automated MPD Choke System installed on semi-submersible rig, Noble Clyde Boudreaux (NCB). The paper will detail MPD objectives, application and well challenges, in conjunction with pore pressure prediction to manage the bottom hole pressure to drill to well total depth safely and efficiently.

This exploration well was drilled from a water depth of 590m from a Semisubmersible rig required MPD application for its exploratory drilling due to uncertainties of drilling window which contained a sharp pressure ramp, with a history of well bore ballooning there was high potential to encounter gas in the riser. The Deepwater MPD package integrated with the rig system, offered a safer approach to overcome the challenges by enhanced influx monitoring and applying surface back pressure (SBP) to adjust bottom hole pressures as required. Additionally, modified pore pressure hunting method was incorporated to the drilling operation to allow more accurate pore pressure prediction, which was then applied to determine the required SBP in order to maintain the desired minimum overbalance while drilling ahead.

The closed loop MPD circulating system allowed to divert returns from the well, through MPD flow spool into MPD distribution manifold and MPD automated choke manifold system to the shakers and rig mud gas separator (MGS). The automated MPD system allows control and adjustments of surface back pressure to control bottom hole pressure. MPD technology was applied with minimal overbalance on drilling and connections while monitoring on background gases. A refined pore pressure hunting method was introduced with manipulation of applied surface back pressure to define this exploration well pore pressure and drilling window. The applied MPD Deepwater technique proved for cost efficiency and rig days to allow two deeper casing setting depths and eliminating requirement to run contingency liners.

MPD system and equipment is proving to be a requirement for Deepwater drilling for optimizing drilling efficiency. This paper will also capture detailed lesson learned from the operations as part of continuous learning for improvement on Deepwater MPD drilling.