Unlocking Well Potential Using an Automated Well Allowable Analysis in a Digital IAOM Framework


Authors

Erismar Rubio (ADNOC Onshore) | Nagaraju Reddicharla (ADNOC Onshore) | Melike Dilsiz (ADNOC Onshore) | Mohamed Ali Al-Attar (ADNOC Onshore) | Apurv Raj (Weatherford) | Sandeep Soni (Weatherford) | Siddharth Sabat (Weatherford) | Jose Isambertt (Weatherford)

Publisher

SPE - Society of Petroleum Engineers

Publication Date

November 11, 2019

Source

Abu Dhabi International Petroleum Exhibition & Conference, 11-14 November, Abu Dhabi, UAE

Paper ID

SPE-197877-MS


Abstract

This paper describes an efficient, accurate, and timesaving approach for setting well allowable using advanced and automated workflows in a digital oil field with more than 300 producing and injecting strings from multi-layered reservoirs having varied reservoir characteristics. This paper provides an insight on the usage of ADNOC shareholders guidelines, well characteristics, surface facility constraints, and integrated asset models to compute the well allowable rate.

An integrated asset operations model (IAOM) within a digital framework provides an automation of engineering approach where shareholder/reservoir management guidelines, in conjunction with a calibrated well and network models, are used to improve efficiency and accuracy of setting wells allowable. This process incorporates the interaction among various components, including wellbore dynamics (Inflow and outflow performance), surface network backpressure effect, and complex system constraints. "System Efficiency and Well Availability" factors as well as predicted well parameters such as GOR and watercut. This advance workflow computes the rate that can be delivered from each well corresponding to each guideline and constraint, thereby providing key inputs to various business objective scenarios for production efficiency improvement.

This automated "Setting Well Allowable" workflow, using an IAOM solution in a digital framework, has enabled the asset to identify true potential of wells and overcoming potential challenges of computational time saving while identifying opportunities. This automated validation workflows ensured usage of updated and validated well models, allowing effective use of the well test information and real time data for further analysis and sensitivities.

The use of the automated workflow has reduced the time to compute the well allowable rates and well technical rates by more than 50%. This workflow prevented engineers from performing tedious manual calculations on a well-by-well basis, therefore engineers focus on engineering and analytical problems rather than collecting data. Additionally, this robust engineering approach provides users with key information associated with a well's performance under various guideline index such as potential rates, well technical rate, minimum backpressure rate, rate to maintain drawdown/ minimum bottom hole pressure limit to ensure a homogenous reservoir withdraw to avoid pressure sink areas. This work process also highlights the wells with increased watercut (WC) and gas oil ratio (GOR), thus providing crucial information for deteriorating well performance. A short-term forecasting with diagnostic curve fitting and trend analysis enabled users to validate deliverability of allowable rates in a calibrated network model scenario, thereby incorporating potential surface constraints and facility bottlenecks.

The robustness of advanced and automated setting of well allowable workflow enables the operator to establish well performance with a solid engineering analysis base, and thereby unlocks key opportunities for saving cost, computational time and assuring short-term production mandate deliverables. This approach supports standardization of the work process across the whole organization.